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Abstract. This paper proposes a method of simultaneous global regis-
tration of multiple depth images which are obtained from multiple view-
points. Unlike the previous method, the proposed method fully utilizes
a silhouette-based cost function taking out-of-view and non-overlapping
regions into account as well as depth differences at overlapping areas.
With the combination of the above cost functions and a recent power-
ful meta-heuristics named self-adaptive Differential Evolution, it realizes
the entire shape reconstruction from relatively small number (three or
four) of depth images, which do not involve enough overlapping regions
for Iterative Closest Point even if they are prealigned. In addition, to
allow the technique to be applicable not only to time-of-flight sensors,
but also projector-camera systems, which has deficient silhouette by oc-
clusions, we propose a simple solution based on color-based silhouette.
Experimental results show that the proposed method can reconstruct
the entire shape only from three depth images of both synthetic and real
data. The influence of noises and inaccurate silhouettes is also evaluated.

1 Introduction

3D shape measurement techniques have made significant progress, and have been
widely used in various fields such as medical, educational, digital archiving and
entertainment fields. For such purposes, range scanners are used to acquire 3D
shapes of real-world objects and scenes. Since the 3D scanners can capture only
one side of the object, multiple depth images should be captured from different
viewpoints and aligned to recover the entire shape of the object as shown in
Fig. 1; such process is called registration in the paper.

Registration techniques can be divided into two classes: global (coarse) and
local (fine) registration. The purpose of global registration is to align the relative
positions without prior knowledge of the initial clues until being possible to per-
form a local registration. The local registration requires a good prealignment to
converge to the optimum solution. Iterative Closest Point (ICP) [1] and Simulta-
neous ICP [2] are well known methods for local registration. On the other hand,
although a large number of studies have been conducted on global registration,
general and robust algorithm has not been established yet.
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Target object

Realtime range sensor

Rotation table

Fig. 1. Entire shape capturing system: (left) by moving projector and camera based
3D scanning systems and (right) by rotating the object.

Global registration methods are mainly categorized into two approaches:
matching-based [3–5] and parameter-based methods [6–9]. Matching-based meth-
ods estimate an approximated position by utilizing 3D shape features [10]. With
the methods, not only different types of algorithms are required depending on
type of 3D shape, e.g., mesh, depth image or point clouds, but also an appropri-
ate 3D shape feature is necessary. Since 3D features cannot be retrieved stably
due to changes on view-direction and scale and noise, the method usually re-
quires manual support in practical cases. To solve the problem of the matching-
based methods, parameter-based methods that use meta-heuristics have been
proposed [7]. Parameter-based methods enable registration of the object regard-
less of type of 3D shape by direct pose-space search approach and it is also
reported that the methods are robust against measurement environments. One
severe drawback of the parameter-based methods is that it is generally a diffi-
cult task to find the optimum solution, because of vast search space, and thus,
usually special assumptions are set, e.g., an angle of rotation is limited [11], etc.

In this paper, we propose a global registration method with parameter-based
approach which does not have special assumptions. To realize robust and practi-
cal convergence even if there are only small number of input, i.e., three or four,
we introduce a new cost function and optimizing technique as follows.

– Silhouette-based cost function, which takes out-of-view and non-overlapping
regions into account as well as depth differences at overlapping areas. With
the function, it only requires few overlapping regions which is not enough
for pairwise registration approach [2].

– Simultaneous global registration method based on evolutionary computa-
tion algorithm named self-adaptive differential evolution (jDE) [12], which
realizes registration of depth images without any prealignment.

– Color based silhouette for projector-camera system to compensate deficient
silhouettes of depth image, which inevitably occurs by occlusions of stereo
pair.
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2 Related work

In order to improve the quality of registration which is prealigned, local registra-
tion method has been researched more then two decades. ICP and the extensions,
which align the shape precisely by finding corresponding points as the closest
point and minimizing the distance between them, are typical solutions [1, 2].
However, if the initial alignment was not enough accurate, the algorithm will
fail because it easily makes wrong matches or it makes the cost to be 0 for the
point which has no corresponding points nearby.

To solve the problem of initial alignment of ICP, many researches have been
conducted known as global registration. Typical solution is a matching based ap-
proach using feature point [3–5]. Sample Consensus Initial Alignment (SACIA)
[13] is a well known prealignment method that extracts key-points based on
Fast Point Feature Histograms (FPFH), which is a fast variant of Point Feature
Histograms (PFH) [14], and aligns two depth images by the key-point correspon-
dences. Since those techniques are based on feature matching, it cannot be used
if there are only small overlapping areas. Recently, the method which realizes
registration even if there are only small overlapping areas is proposed [5]. This
method aligns two wide baseline range scans by maximizing their contour coher-
ence, that is, minimizing a distance between corresponding contours extracted
from the range images. However, the method still require a certain amount of
overlaps and minimum four scans are required.

To solve the problem on matching based method, parameter-based methods
have been proposed and those are summarized in [7]. Although previous methods
have severe drawbacks on computational cost and vast local minima, our method
overcomes the problem by using new cost functions with appropriate optimizing
algorithm.

3 The proposed method

3.1 Overview

The proposed registration method first sets the specific viewpoint as the source

depth image, transforms all the depth images to the viewpoint using the orien-
tation and position parameters and merges them to make a target depth image.
Then the target depth image is compared to the source depth image to calculate
the cost based on silhouette as well as depth differences. Optimum parameters
are found by minimizing the sum of the costs of different viewpoints.

As for the cost function of two depth images, usually depth differences of
overlapping regions are used. With such method, if the number of images is small,
size of overlapping region becomes small resulting in unstable registration. To
overcome the problem, we propose a new cost function using non-overlapping
region which is usually ignored for optimization. If all the depth images are
transformed with the correct parameters, target depth image must be inside
the silhouette of the source depth image. Based on the above standpoint, the
proposed method simply puts cost on the part of the target depth image which
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(a) View 1 (b) View 2 (c) View 3 (d) View 4
(S1: red) (S2: green) (S3: blue) (S4: yellow)

Fig. 2. Example of the source and the transformed tar-
gets (upper) and their silhouettes (lower). In the upper
images, four models are classified by color. In the lower
images, white, blue, and light blue represent source, tar-
get, and overlapped regions, respectively.

Fig. 3. Example of locally
optimum, but not glob-
ally. Each pair, red-blue
and green-yellow, are well
aligned, but not between
them.

is outside the source depth image. Fig. 2 shows examples of the non-overlapping
regions; white, blue and light blue regions denote the source image, the target
image which is not overlapped with source image, and the source image which
is overlapped with the target image. We put constant cost on blue regions.

3.2 Acquiring multiple depth images around the object

In the method, we assume that the object is captured from multiple viewpoints
to cover the entire shape. To achieve such scan, we assume either moving the
scanner around the object or rotating the object with turn table, as shown in
Fig. 1. Usually, to recover the entire shape using multiple scan data, it is required
to scan the object from 8, 10 or more directions to have enough overlapping
regions to stably run ICP or similar local registration methods. On the other
hand, since our technique is based on silhouette of the object and we need
almost no overlapping region in theory, just three or four scans are enough for
entire shape registration, which greatly eases the scanning process and cannot
be realized by previous methods; this is an important advantage of our method.

In terms of scanning device, since either object or scanner moves during the
scan, we assume realtime 3D scanner which can capture the shape only with a
short period of time. There are two types of realtime scanner, such as stereo
based one, e.g., video-projector [15] or laser based system [16], and Time-Of-
Flight (TOF) based one, e.g., Kinect2 [16] and Swiss ranger [17]. Stereo based
scanner inevitably produces occluded regions because of wide base-line, whereas
TOF sensor does not have such drawbacks. Since our method is based on silhou-
ette of the object and its accuracy is affected by the silhouette, TOF scanner
is more suitable in theory. However, depth accuracy and spatial resolution of
realtime TOF sensor is basically lower than that of stereo based one, and thus,
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stereo based scanner is considered main target in the paper. To compensate the
occlusion problem, we propose an efficient method using color based silhouette
which is captured by the camera of a projector-camera system.

4 Global registration of entire shape using silhouette

4.1 Cost function for simultaneous entire registration

A problem of simultaneous entire shape registration involves variables corre-
sponding to rigid transformation parameters of all N depth images except the
last one which was fixed to common world coordinate system. Therefore, so-
lution vector x consists of set of rotation angles represented by quaternion
(θ1, φx1, φy1, φz1), (θ2, φx2, φy2, φz2), . . . , (θN−1, φxN−1, φyN−1, φzN−1) and set of
translation vectors (x1, y1, z1), (x2, y2, z2), . . . , (xN−1, yN−1, zN−1).

In each calculation of objective function (cost function) for optimization, first,
the proposed method renders all the silhouette images with depth information
of reconstructed objects using x from all the viewpoints of depth sensors which
capture the input shapes. Here, depth images which corresponds to each depth
sensor are called source depth images and denoted as S1, . . . , SN and the rest of
the depth images are merged for each viewpoints and called target depth images

and denoted as T1, . . . , TN . Fig. 2 shows examples of S1, . . . , SN (white) and
T1, . . . , TN (blue and light blue) in the case of four scanned images.

The cost function proposed in this paper is calculated by comparing the
target and source depth images. The cost function consists of the cost calculated
by silhouettes and the cost calculated by depth differences. Since the proposed
method does not depend entirely on the cost of overlapping region, the cost from
silhouette is indispensable to prealignment. The cost from silhouette is based on
the area size of the target regions stuck out from the silhouette of the source, and
leads the target region to shrink into the view volume which is constructed by the
source silhouette. It works efficiently to realize coarse, i.e., globally consistent,
registration at early stage of the optimization. The cost from depth difference at
overlapping region works effectively on fine registration at the latter stage of the
optimization; it makes the surface of source and the target close to each other.
Based on the notation, objective function F (x) is defined as follows:

F (x) =
1

N

N
∑

k=1

f(Tk, Sk) (1)

f(t, s) =
1

p

p
∑

i=1

δ(ti, si) (2)

δ(ti, si) =







C1|si − ti| (overlapping region)
1 (non-overlapping region)
C2 (outside of the view-field),

(3)

where t and s denotes depth images of a target and a source, ti and si denotes
the depth values of pixel i in t and s, and p is the number of pixels in the depth
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images. The cost from silhouette corresponds to the cost of non-overlapping
region and outside of the view-field is represented by δ(ti, si), which returns high
penalty value C1 when i is outside of the view-field, moderate value C2 when the
pixel in si exists in non-overlapping region, and a value based on the distance
between si and ti in overlapping region. Here, C1 and C2 should be adjusted in
order that the cost of overlapping region can be almost the same or smaller than
the cost of non-overlapping region; higher C2 enhances the force to bring the
source and the target close to each other, however, if it is too high, it entraps
to local optima in which the distance between them is minimum. Reasonable
values for them are [1, 10] and [1, 50] with our experience, respectively.

4.2 Global optimization by self-adaptive Differential Evolution

As described in Section 4.1, the entire registration problem involves many vari-
ables in x and the cost function F (x) to be minimized. The least number of scans
to reconstruct the entire shape is three, and in this case the problem consists
of 21 variables. This optimization problem seems partially separable; variables
for each transformation vector can basically be optimized individually. However,
to escape from local optima, many variables should be changed simultaneously.
The most hard local optima are that more than one pair (or group) of shapes are
registered in each local coordinate systems respectively and the pairs (or group)
are not located appropriately in the global coordinate system as shown in Fig.
3. To escape from such local optima, changes of a few variables are not suffi-
cient; variables for two transformation vectors of two shapes should be changed
simultaneously.

Therefore, the proposed registration method adopts meta-heuristics for global
optimization named self-adaptive Differential Evolution (jDE)[12]. Differential
Evolution (DE) [18, 19] is one of the most powerful stochastic real-parameter op-
timization algorithms. DE-variants and one other recent powerful EC algorithms
named Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) [20]
occupied high ranks in the standard numerical benchmarks such as IEEE Int’l
Conf. Evolutionary Computation (CEC) competition on real parameter opti-
mization. DE is suited to multimodal, separable problems, whereas CMA-ES to
unimodal, non-separable ones.

jDE is simple but powerful self-adaptive DE algorithms that successfully
eliminate control parameter adjustment by letting individuals have their own
control parameter values and statistically changing the values. jDE showed the
best performance in the competition “Evolutionary Computation in Dynamic
and Uncertain Environments” in CEC2009 [21].

Unlike Genetic Algorithm [22], DE employs difference of solution candidates
to explore the search space. DE generates solution candidates (vectors) by mu-
tation and crossover. First, a mutant vector is generated as follows:

vi,g+1 = xr1,g + Fi,g(xr2,g − xr3,g), (4)

where g denotes the index of generation. xr1,g, xr2,g, and xr3,g are randomly
chosen vectors from the interval [1, NP ] (r1 ̸= r2 ̸= r3 ̸= i). Note that the
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notations in this section are based on previous work [12], and have different
meanings from the other sections of this paper. The above mutant vector are
recombined with the target vector by crossover to produce trial vector ui,g+1 as
follows:

uj,i,g+1 =

{

vj.i,g+1 if randj,i ≤ CRi,g or j = jrand
xj,i,g otherwise

(5)

Finally, the better one of ui,g+1 and xi,g survives and become a member of
generation g + 1 as follows:

xi,g+1 =

{

ui,g+1 if f(ui,g+1) ≤ f(xi,g)
xi,g otherwise

(6)

Scale factor Fi,g and crossover rate CRi,g are control parameters which deeply
influence the search performance; for instance, small scale factor urges a local
search, and low values of crossover rate are recommended for separable problems.
In jDE, Fi,g and CRi,g associated with i-th solution are statistically changed as
follows:

Fi,g+1 =

{

Fl + rand1 × Fu if rand2 < τ1
Fi,g otherwise

(7)

CRi,g+1 =

{

rand3 if rand4 < τ2
CRi,g otherwise

(8)

where Fl and Fu determine the range of the scale factor. Letting Fl and Fu be
0 and 1 respectively frees a human developer to adjust the control parameters
except the population size. The probabilities to change Fi,g and CRi,g are τ1 and
τ2 respectively. They does not affect the result by choosing [0.05, 0.3], and are set
to 0.1 according to the previous work [12]. By the above self adaptation process,
adequate values of Fi,g and CRi,g lead to better solution candidates that are
more likely to survive, resulting in propagate those good parameter values.

4.3 Application to projector-camera system

When using a projector-camera system to obtain 3D shapes, self-occlusion causes
deficiency of silhouette image due to stereo baseline. This silhouette deficiency
may hamper the precise registration since the proposed method makes full use of
silhouette for global optimization. Fig. 4(a) and (b) show a missing silhouettes
obtained by a projector-camera system and a failed example of reconstructed
shape with deficient silhouette images, respectively. With these silhouette im-
ages, the accurate reconstruction result cannot be evaluated properly; the target
are not completely be covered by the deficient silhouettes, and the value of the
cost function increases. The targets are then biased to make themselves gather
into the center of the shape. The larger stereo baseline for the projector-camera
system is used, the larger deficient regions the silhouette involves.

To solve the problem, when using a projector-camera system, we propose
the method which compensates the deficient regions on silhouette images by
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(a) Obtained silhouette
image by projector-
camera system.

(b) Failed example re-
constructed from (a)

(c) Extracted region in
color image.

(d) Recovered silhou-
ette.

Fig. 4. Example of silhouette recover with color image.

color information. To recover the deficient region of silhouette, we apply graph-
cut algorithm using both color information and the silhouette of a depth image
as the data cost. The extracted silhouette of the target object using graph-cut
is shown in Fig.4(c). The comparison between the original silhouette and the
recovered one using color information is shown by red regions in Fig.4(d). The
above process is applied to each depth image. The cost function δ(ti, si) in the
recovered silhouette region in either source or target image is regarded as zero.

5 Evaluation

To verify the effectiveness of the proposed method, experiments were conducted
with synthetic 3D model objects V1, V2, V3, and V4 shown in Fig. 5 and actual
objects M1, M2, M3, M4, and M5 measured by a projector-camera system. First,
four experiments of different algorithm (Sec. 5.1), evaluation on influence of the
size of the overlapped region (Sec. 5.2), comparison to previous work (Sec. 5.3),
and noise influence (Sec. 5.4) were performed with the synthetic objects. Then,
entire shape reconstructions using actual objects were demonstrated (Sec. 5.5).
Finally, the influence of inaccurate silhouette (Section 5.6) and an ability on
using multiple scans to recover a large object (Sec. 5.7) were examined.

In the experiments with the synthetic objects, depth images were synthe-
sized by a virtual TOF camera by rotating the object around y-axis. The target
position to decide a view-direction of virtual sensor was set to the center of the
object. The sensor’s position was set behind the object center to z direction with
distance dz:

dz =
Lmax +m

tan(fov)
, (9)

where Lmax is the maximum value between the height and width of the synthetic
object and m denotes the margin set to be 1. The field of view fov of the camera
was set to 30 degrees. The number of created points is from 10,000 to 25,000.
The object size are normalized to be settled in the box region [-1.0, 1.0].

5.1 Comparison on optimization algorithms

In the first experiment, we compare the global optimization algorithm jDE with
CMA-ES with restart (IPOP-CMA-ES) [23], that showed the best performance
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(a) V1 (b) V2 (c) V3 (d) V4

Fig. 5. Synthetic 3D model objects used in the experiments.
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Fig. 6. Comparison on optimizers and
their control parameters.

Fig. 7. Example local optimum from
which IPOP-CMA-ES could not escape.

in Black Box Optimization Benchmarking 2012 [24]. Four depth images for each
object V1, V2, V3, and V4 were used to reconstruct each model. According to the
previous work [20, 12], their control parameters, λ in IPOP-CMA-ES and pop-
ulation size NP in jDE, were changed 20, 30, 40 and 100, 200, 300, respectively.
IPOP-CMA-ES restarted and doubled the value of λ when no improvement of
the best solution occurred during last 50, 80, or 100 generations, and terminated
after three restarts. jDE stopped when no improvement of the best solution
could be seen during 200, 300, or 500 generations. 20 independent runs have
been performed for each object and for each algorithm and its control parame-
ter configuration. C1 and C2 were set to 2 and 4, respectively. Ranges of variables
for translation and rotation were [-1.0, 1.0] and [-180◦, 180◦], respectively. In each
run, the entire shape registration was regarded as success when RMSE was less
than 0.05.

Fig. 6 demonstrates RMSE (shown in box plots) and the success rates
(shown by line graphs) of IPOP-CMA-ES and jDE in reconstructing V2 from
four images. The performance of jDE was better than IPOP-CMA-ES and im-
proved in both the success rate and RMSE as the population size increased,
whereas the performance of IPOP-CMA-ES was worse than jDE and indepen-
dent from λ. Since the fitness landscape of the registration problem based on the
cost functions is globally multimodal in addition to local small perturbations,
IPOP-CMA-ES was prone to fall into local optima as shown in Fig. 7. According
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(a) eight images (45◦) (b) four images (90◦) (c) three images (120◦)

Fig. 8. Difference of overlapped regions (red) on capturing angles.
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Fig. 9. Example transition of objective function
value in reconstructing V2 from three images.

�� ��            ��            ��             �� ��            ��            ��

3 images                                              4 images                     

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.021

0.023

0.025

0.027

0.029

0.031

0.033

0.035

0.037

0.039

su
cc

es
s 

ra
te

R
M

S
E

Fig. 10. Results on the different
number of captured images.

to the above results, we basically set NP to 300 in the later experiments in this
paper.

5.2 Influence on size of overlapping region

Next, to show the advantage of the proposed method, we use only three or
four images as the input to conduct registration; note that only little overlapped
regions exist with such condition. We also test the registration with eight images
which have enough overlapped region.

Input images were synthesized from virtual viewpoints with the interval of
120, 90 and 45 degrees, respectively. jDE stopped the search when no improve-
ment of the best solution in the population could be seen in more than 1,000
generations. In the case reconstructing from eight images, NP was set to 1,600,
a termination condition was extended to 4,000 generations, and only one run
was performed due to the processing time. Fig. 8 shows the overlapped region
with red color for each dataset. As the number of captured images decreased,
the overlapped region significantly reduced so that the pair-wised methods could
hardly align the images.

Fig. 9 shows an example transition of the objective function value of the
best solution in reconstructing V2 from three images. As the value decreased,
the difference between the target and the source reduced. Fig. 10 demonstrates
RMSE shown in box plots and the success rates shown by line graphs, and
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(a) V1 (b) V2 (c) V3 (d) V4

Fig. 11. Example results from three im-
ages by the proposed method.

(a) V1 (b) V2 (c) V3 (d) V4

Fig. 12. Example results from four im-
ages by the proposed method.

(a) V1 (b) V2 (c) V3 (d) V4

Fig. 13. Example results from eight im-
ages by the proposed method.

(a) V1 (b) V2 (c) V3 (d) V4

Fig. 14. Example pairwise registration
results by SACIA.

(a) 10% 15% (a) View 1 (b) View 2 (c) View 3 (d) Reconstruc-
tion result

Fig. 15. Reconstruction re-
sult from noisy depth images

Fig. 16. Reconstruction result from distorted shape im-
ages

Figs. 11, 12 and 13 show examples of the reconstructed 3D models. In the case
reconstructing from eight images, the proposed method could succeed to align
all images with RMSE of 4.55× 10−2, 6.63× 10−2, 6.40× 10−2, and 6.51× 10−2

for V1, V2, V3, and V4, respectively. As shown in Fig. 10, the proposed method
could reconstruct the entire shape from three or four images, despite the quite
small overlapping regions.

5.3 Comparison with SACIA

The proposed method was compared with SACIA [13], a prealignment method
based on key-point matching, in the case of using four images. Fig. 14 shows the
examples of the pair-wised registration results by SACIA. Due to less overlapping
regions, it was difficult for SACIA to align two depth images. In contrast, the
proposed method could align just with four depth images as shown in Figs.10
and 12.
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5.4 Robustness to noise and distortion

The robustness to noise of the proposed method was experimentally validated
in this section with synthetic object V2. First, the random uniform noise were
added with the range of [-1.1, 1.1]. The amount of noise was 10% and 15% of the
number of points of the tested objects [4]. Fig. 15 shows the results. The proposed
method successfully reconstructed the entire shapes in noise levels 10%. In the
case with 15% noise, the green target was a little off the other depth images, but
being enough quality as prealignment.

Next, the influence of the measurement error and distortion was investi-
gated by adding small perturbations to positions of all points with the radius
of 0.001. Fig. 16 (a) to (c) show the object shapes whose points are perturbed,
and Fig. 16(d) shows the reconstruction result with the obtained transformation
parameters and with object shapes not involving the above point perturbations.
From the results, we can confirm that the proposed method can avoid the influ-
ence of the small distortion and all depth images are successfully aligned.

5.5 Experiments with real data

We use a projector-camera system to scan real objects. The system consists of
EPSON EMP-1715 as a projector and Point Grey GRAS-20S4C-C as a camera.
The baseline between the projector and the camera was 30 cm, and the distance
between the object and the camera was 70 cm. The real object M1, M2, M3, M4,
and M5 were used. Each object was shot three times with rotating 120 degrees.

Figs. 18 and 19 show the reconstruction results of the proposed method with-
out and with silhouette recovery, respectively; note that a cost function of without
method is same as for ICP [2]. Without silhouette recovery, although shapes are
gathered into the center of the shape, all of them cannot be reconstructed prop-
erly. To the contrary, the proposed method with silhouette recovery successfully
reconstructed the entire shapes of all tested objects.

5.6 Influence of graph cut error in silhouette recovery

The influence of the error in graph cut for the silhouette recovery was investigated
with M2. The first case was the unexpected entering of the background to the
silhouette. We assumed that one of the silhouette image extracted by graph cut
involved the background region as shown in Fig 20 (a). The falsely detected
region in the silhouette (the upper red-colored area of the source in Fig 20 (a))
has sufficient size to involve the target shape. The second case tested is the
silhouette deficiency; a shaded area on the object was mistakenly recognized as
background even after graph cut as shown in Fig.21(b).

Fig. 20 (b) and Fig. 21 (c) show the reconstruction results by the proposed
method, demonstrating that the proposed method could reconstruct the entire
shape with enough accuracy without being affected by the silhouette recovery
failure.
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(a) M1 (b) M2 (c) M3 (d) M4 (e) M5

Fig. 17. Real 3D model objects used in the experiments.

(a) M1 (b) M2 (c) M3 (d) M4 (e) M5

Fig. 18. Reconstruction results without silhouette recovery.

(a) M1 (b) M2 (c) M3 (d) M4 (e) M5

Fig. 19. Reconstruction result with silhouette recovery.

5.7 Reconstruction of a large object from partially scanned data

Reconstruction of a large object from partially scanned data, e.g., face, hands,
legs of statue, is practically important for wide applications [25]. Since our
method basically assumes that the entire silhouette of object is available, prepro-
cessing is necessary to apply our method, i.e., constructing the entire silhouette
of object by aligning multiple partial objects. To examine the proposed algorithm
with the preprocessing, we conducted the experiment using synthetic data V4.
First, a virtual TOF camera scanned V4 four times while moving the camera
along y-axis in parallel. Then, as preprocessing, ICP was applied to the four
images shown in Fig. 22(a), producing the depth image involving the entire sil-
houette of V4 as shown in Fig. 22(b). Then, we do the same process by rotating
the camera 120 degrees around y-axis. Finally, we apply the proposed method
to the three preprocessed entire silhouettes and successfully reconstructed the
entire shape as shown in Fig. 22(c).
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(a) Silhouette in-
volving background

(b) Reconstruct re-
sult from (a)

(a) Captured color
image

(b) Graph cut re-
sult

(c) Reconstruct re-
sult

Fig. 20. Result from over-
detected silhouette.

Fig. 21. Result from missing silhouette.

(a) Scanned image

examples.
(b) Preprocessed images. (c) Reconstruction result.

Fig. 22. Reconstruction result of large object with ICP-based preprocessing.

6 Conclusions

In this paper, we propose a simultaneous global registration method to achieve
entire 3D shape reconstruction from relatively small number (three or four) of
depth images. Even though input shapes do not involve enough overlapping re-
gions, the proposed method reconstructs the entire shape without any initial
positions. This is realized by using the cost which is assigned on out-of-view
and non-overlapped regions as well as overlapped ones with global optimization
method by jDE. In addition, our method is applicable to not only TOF sen-
sors, but also projector-camera systems with color-combined silhouette recov-
ery method. Experimental results showed that the proposed method can recon-
struct entire 3D models even from three images captured by 120 degrees intervals
which have almost no overlapping regions. Results using real data captured by
a projector-camera system showed that color-based silhouette technique allows
accurate reconstruction even if deficient in the depth images. Speeding up for
optimization is our important future research.



Simultaneous Entire Shape Registration of Multiple Depth Images 15

References

1. J.Besl, P., D.McKay., N.: A method for registration of 3-d shapes. IEEE Trans.
Pattern Analysis and Machine Intelligence 14 (1992) 239–256

2. NEUGEBAUER, P.: Geometrical cloning of 3d objects via simultaneous registra-
tion of multiple range image. Proc. Int’l Conf. Shape Modeling and Applications
(1997) 130–139

3. Li, H., Hartley, R.: The 3d-3d registration problem revisited. In: Proc. Int’l Conf.
Computer Vision. (2007) 1–8

4. Yang, J., Li, H., Jia, Y.: Go-icp: Solving 3d registration efficiently and globally
optimally. In: IEEE Int’l Conf. Computer Vision. (2013) 1457–1464

5. Wang, R., Choi, J., Medioni, G.: 3d modeling from wide baseline range scans
using contour coherence. The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2014) 4018–4025

6. Johnson, A., Hebert, M.: Using spin images for efficient object recognition in
cluttered 3d scenes. Pattern Analysis and Machine Intelligence, IEEE Transactions
on 21 (1999) 433–449

7. Santamaŕıa, J., Cordón, O., Damas, S.: A comparative study of state-of-the-art
evolutionary image registration methods for 3d modeling. Computer Vision and
Image Understanding 115 (2011) 1340–1354

8. Silva, L., Bellon, O.R.P., Boyer, K.: Precision range image registration using a
robust surface interpenetration measure and enhanced genetic algorithms. IEEE
Trans. Pattern Analysis and Machine Intelligence 27 (2005) 762–776

9. Brunnstrom, K., Stoddart, A.J.: Genetic algorithms for free-form surface matching.
In: Proc. Int’l Conf. Pattern Recognition. Volume 4. (1996) 689–693 vol.4

10. Salti, S., Tombari, F., Di Stefano, L.: A performance evaluation of 3d keypoint
detectors. In: Int’l Conf. 3D Imaging, Modeling, Processing, Visualization and
Transmission. (2011) 236–243

11. He, R., Narayana, P.A.: Global optimization of mutual information: application to
three-dimensional retrospective registration of magnetic resonance images. Com-
puterized Medical Imaging and Graphics 26 (2002) 277–292

12. Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control
parameters in differential evolution: A comparative study on numerical benchmark
problems. Trans. Evolutionary Computation 10 (2006) 646–657

13. Rusu, R., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3d
registration. In: Int’l Conf. Robotics and Automation. (2009) 3212–3217

14. Rusu, R., Blodow, N., Marton, Z., Beetz, M.: Aligning point cloud views using
persistent feature histograms. In: Int’l Conf. Intelligent Robots and Systems. (2008)
3384–3391

15. Furukawa, R., Kawasaki, H.: Uncalibrated multiple image stereo system with
arbitrarily movable camera and projector for wide range scanning. In: IEEE Conf.
3DIM. (2005) 302–309

16. Zhang, Z.: Microsoft kinect sensor and its effect. MultiMedia 19 (2012) 4 –10

17. Mesa Imaging AG.: SwissRanger SR-4000 (2011) http://www.swissranger
.ch/index.php.

18. Storn, R., Price, K.: Differential evolution a simple and efficient heuristic for global
optimization over continuous spaces. J. Global Optimization 11 (1997) 341–359

19. Das, S., Suganthan, P.N.: Differential evolution: A survey of the state-of-the-art.
IEEE Trans. Evolutionary Computation 15 (2011) 4–31



16 Takuya Ushinohama, Yosuke Sawai, Satoshi Ono, Hiroshi Kawasaki

20. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evol. Comput. 9 (2001) 159–195

21. Li, C., Yang, S., Nguyen, T.T., Yu, E.L., Yao, X., Jin, Y., g. Beyer, H., Suganthan,
P.N.: Benchmark generator for cec’ 2009 competition on dynamic optimization
(2008)

22. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison Wesley, Reading (1989)

23. Auger, A., Hansen, N.: A restart cma evolution strategy with increasing population
size. In: Congress Evolut. Comput. Volume 2. (2005) 1769–1776

24. Brockhoff, D., Auger, A., Hansen, N.: On the effect of mirroring in the IPOP
active CMA-ES on the noiseless BBOB testbed. In: Proc. Ann. Conf. Genetic and
Evolutionary Computation. (2012) 277–284

25. Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., Pereira, L., Ginzton,
M., Anderson, S., Davis, J., Ginsberg, J., Shade, J., Fulk, D.: The Digital Michelan-
gelo Project: 3D scanning of large statues. In: Proceedings of ACM SIGGRAPH
2000. (2000) 131–144


